Федеральное государственное бюджетное учреждение науки
Институт теории прогноза землетрясений и математической геофизики
Российской академии наук
Российская Академия Наук

Кинематическое динамо

Магнитный α-эффект и вихревая диффузия не могут считаться основными механизмами генерации многомасштабных полей.

Рассмотрена кинематическая генерация пространственно-периодическим течением электропроводной жидкости магнитных мод вида произведения трехмерного поля, имеющего такую же периодичность, на гармонику Фурье с произвольным постоянным волновым вектором q. Проведены расчеты магнитных мод с максимальным по q инкрементом роста γ для модельного течения общего вида (в таких течениях присутствует магнитный α-эффект) и для центрально-симметричного модельного течения (в таких течениях α-эффект отсутствует, но в модельном течении присутствует отрицательная магнитная вихревая диффузия). Показано, что магнитные моды с максимальным по q инкрементом роста γ характеризуются слабым разделением пространственных масштабов, поэтому указанные эффекты не могут считаться основными механизмами их генерации.

Изоповерхности плотности кинетической энергии модельного течения общего вида на уровне 50% от максимальной плотности. Изображен один куб периодичности течения.


Максимальный по q инкремент роста магнитных мод γ (вертикальная ось) (а) для модельного течения общего вида и волновой вектор q(вертикальная ось) (б), для которого достигается maxqγ, как функции молекулярной магнитной диффузии h (горизонтальная ось). Точки показывают вычисленные величины maxqγ (а). Сплошная линия: |q|, штриховые: qn, длина штриха увеличивается с индексом n (б).

Изоповерхности инкремента γ в пространстве волновых векторов q для модельного течения общего вида для молекулярной магнитной диффузии h=0.1 на уровнях 25%, 50%, 75% и 90% от maxqγ.

Изоповерхности плотности кинетической энергии центрально-симметричного модельного течения на уровне 60% от максимальной плотности. Изображен один куб периодичности течения.

Максимальный по q инкремент роста магнитных мод g (вертикальная ось) (а) для центрально-симметричного модельного течения и волновой вектор q (вертикальная ось) (б), для которого достигается maxqγ, как функции молекулярной магнитной диффузии h (горизонтальная ось). Точки показывают вычисленные величины maxqγ (а). Локальные максимумы γ достигаются при q=0 (правая ветвь, пунктир, нейтральные моды), q=(0,1/2,0) (средняя ветвь, штриховая линия), для левой ветви (сплошная линия) соответствующие q изображены на графиках (б): сплошная линия: |q|, штриховые: qn, длина штриха увеличивается с индексом n (б).

Изоповерхности инкремента роста g магнитных мод в пространстве волновых векторов q для центрально-симметричного модельного течения общего вида для молекулярной магнитной диффузии h=0.1 на уровнях 25%, 50%, 75% и 90% от maxqγ.

Публикация:
В.А. Желиговский, Р.А. Чертовских. О кинематической генерации магнитных мод блоховского типа. Физика Земли, №1, 2020. .


Идеальная магнитогидродинамика

Разложение решения уравнений идеальной магнитогидродинамики в ряд Тейлора по времени может быть использовано для его вычисления.
 
Доказано, что, если начальные скорость течения жидкости и магнитное поле - аналитические функции пространственных переменных, то решение системы трехмерных уравнений идеальной магнитогидродинамики аналитично по пространственным переменным и времени на некотором временнóм интервале строго положительной длины. С использованием свойства вмороженности магнитного поля построены разложения решения в эйлеровых и лагранжевых координатах в ряды Тейлора по времени. Для их коэффициентов выведены рекуррентные соотношения. Эти результаты положены в основу алгоритмов численного интегрирования рассматриваемых уравнений по времени. Лагранжев алгоритм опробован в расчетах; в решении наблюдается образование структур меньших размерностей. Уже при t≈1.5 использованное пространственное разрешение 2563 гармоник Фурье оказывается недостаточным, и на изоповерхностях появляется численная "рябь".
 

Изоповерхности плотности кинетической энергии течения на уровне 1/3 (левый столбец) и 1/2 (правый столбец) максимума с шагом по времени ≈0.5 (точные времена t указаны на рисунке). Изображен один куб периодичности течения.

 

Изоповерхности плотности магнитной энергии течения на уровне 1/3 (левый столбец) и 1/2 (правый столбец) максимума с шагом по времени ≈0.5 (точные времена t указаны на рисунке). Изображен один куб периодичности течения.

Публикация:

В.А. Желиговский, О.М. Подвигина. Численный алгоритм интегрирования по времени задач идеальной магнитогидродинамики, опирающийся на аналитичность их решений. Физика Земли, №1, 2020.


Прогноз опасности сильных афтершоков

В рамках проекта РНФ 15-17-00093 в ИТПЗ РАН под руководством д.ф.-м.н. П.Н. Шебалина была разработана Информационная система автоматической оценки сейсмической опасности после сильных землетрясений AFCAST. Эта система работает в режиме времени близком к реальному. Оцениваются область эпицентров ожидаемых афтершоков, максимальная магнитуда и длительность опасного периода.  Для оценки используются данные каталога ANSS ComCat Геологической службы США ( USGS). В настоящее время ведется прогноз возможных афтершоков землетрясений мира магнитудой 6.5 и более.
 
При создании системы был получен ряд фундаментальных результатов. В частности, была продемонстрирована независимость магнитуды сильных афтершоков от времени [Баранов, Шебалин, 2019]. Было введено понятие продуктивности землетрясения относительной магнитуды (число инициированных непосредственно этим землетрясением событий магнитудой не ниже порога, определяемого фиксированной разностью относительно этого землетрясения). Установлено, что это величина имеет экспоненциальное распределение, а среднее значение распределения быстро убывает с глубиной очага. Экспоненциальное распределение числа афтершоков относительной магнитуды объясняет форму распределения разности магнитуды основного толчка и сильнейшего афтершока (закон Бота). Размах (дисперсия) этого распределения определяется значением параметра b закона Гутенберга-Рихтера, а положение моды распределения средним значением числа афтершоков относительной магнитуды. Это позволяет также оценить зависимость разности магнитуды основного толчка и сильнейшего афтершока от времени.
 
Для работы с системой AFCAST перейдите по ссылке https://afcast.org/afcast/. Краткая инструкция по работе с системой AFCAST находится по ссылке: AFCAST-manual.pdf.
Результаты системы носят предварительный характер и могут использоваться только в научных целях. В случае неполадок каких-либо элементов системы AFCAST необходимо сообщить по e-mail: bars.vl@gmail.com, vadim@krsc.ru.
 

Примеры работы программы





Основные публикации:

Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 2. Оценка области распространения сильных афтершоков // Физика Земли. 2017. №  3. С.  43–61.

Шебалин П.Н., Баранов С.В. Экспресс оценка опасности сильных афтершоков района Камчатки и?Курильских островов // Вулканология и сейсмология. 2017. №  4. С.  57

Shebalin P., Baranov S. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake  // Pure and Applied Geophysics. 2017. V. 174, No. 7, P. 3751–3764. DOI 10.1007/s00024-017-1608-9.

Shebalin P., Narteau C. Depth dependent stress revealed by aftershocks // Nature Communiations. 2017. V. 8, No. 1317. DOI: 10.1038/s41467-017-01446-y

Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 3. Динамический закон Бота // Физика Земли. 2018. Т. 54. №6. С. 129-136.

Шебалин П. Математические методы анализа и прогноза афтершоков землетрясении?: необходимость смены парадигмы // Чебышевский сборник. 2018. Т. XIX, Вып. 4(68). С. 227-242.

Шебалин П.Н., Баранов СВ., Дзебоев  Б.А. Закон повторяемости количества афтершоков // Доклады Академии наук. 2018. T. 481. № 3.

Баранов С.В., Шебалин П.Н. Глобальная статистика афтершоков сильных землетрясений: независимость времен и магнитуд // Вулканология и сейсмология. 2019. №2. С. 67-76.

Баранов С.В., Павленко В.А., Шебалин П.Н. О прогнозировании афтершоковой активности. 4. Оценка максимальной магнитуды последующих афтершоков // Физика Земли. 2019. Т. 55. №4. С. 1-11.

Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 5. Оценка длительности опасного периода // Физика Земли. 2018. Т. 55. №5.